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FOREWORD
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program was sponsored by the Aeronautical Research Laboratories, Office
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cognizance of Captain T. Andrada, Task Scientist and Mr. Erich Soehngen,
Chief of the Thermo-Mechanics Research Laboratory, ARL.
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ABSTRACT

A calorimetric enthalpy probe of emall size, capable of continuous
operation in a high temperature, high heat flux environment, such as an
arc, is described. The instrument operates by removing a sample from
a hot gas stream and cooling it by evaporative film cooling until the tem-
perature of the gas sample is low enough for measurement by conventional
means. The composition of the cooled gas sample is measured and the
total enthalpy of the hot gas entering the instrument is determined by an
energy balance technique. The structure of the instrument may be main-~
tained at a tolerable temperature level by forced convective cooling or by

evaporative film cooling.

The instrument has been compared for accuracy with gas temperature
measurements made by conventional techniques at temperatures between
2100 and 4300 °*R. These tests, using nitrogen as the test gas and water
as the evaporative coolant, have shown an average deviation of 2.3 percent

between the methods of measurement.

An instrument with an outside diameter of 0. 1' has been fabricated
and tested. This instrument is designed to measure an enthalpy of 15,000
Btu/#. To complement the enthalpy determination instrument, an instru-
ment for continuous measurement of the gas-sample composition has been
developed,
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A Area (cmz) (ftz)
A AL A" Defined by Equation (16)

C Capacitance ( uuf )

)
b
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Dielectric constant

2
Diffusion coefficient (ft /sec)

'
o

Spacing between plates of capacitor (cm)
Diameter of core of radiating gas (ft)
Enthalpy (Btu/#)

Constant defined by Equation (24)
Thermal conductivity (Btu/hr ft>F/ft)
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~
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X
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o v

Rate of energy transfer (Btu/hr)
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Re Reynolds Number
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Temperature (°F)
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Distance (ft)
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Mole fraction (# mole/# mole mixture)
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Stefan-Boltzmann constant

SUBSCRIPTS

A,8,C,D,E,F,6,H4,I Denotes location in Figures 1 and 2

< Denotes coolant
€0y Denotes carbon dioxide
9 Denotes gas
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I. INTRODUCTION

Experimental diagnosis of high-temperature gas streams, such as
occur in electrical arcs, is limited by a lack of usable instrumentation.
Techniques considered conventional in low temperature operations are
not generally usable due to the high-temperature environment in which
the instrument must operate. Total enthalpy of a high-temperature gas
stream is a parameter of interest because it is one of the state functions
of the gas and because it is the driving potential in energy transfer
processes. At present there are two general techniques of enthalpy
measurement in large-area, high-temperature gas streams. One tech-
nique utilizes measurement of heat transfer to a surface of designated
geometry and temperature and via calibration techniques and knowledge
of the heat transfer mechanism, the total gas enthalpy is computed. The
second technique utilizes a direct calorimetric measurement of the total
enthalpy by collecting a sample of gas and cooling it in a heat exchanger.
The total enthalpy of the inlet gas is obtained by making an energy balance
on the heat exchanger. The coolant in the heat exchanger serves the dual
purpose of cooling the gas sample and maintaining the instrument surfaces
at low temperature in order that structural integrity is maintained. Due to
the dual source of energy in the coolant, a calibration is required to evaluate
the energy of the gas sample. This calibration is accomplished by pulsing
the gas flow in the exchanger to determine the energy content of the coolant
when a gas sample is not being cooled. This calibration technique makes

the operation of this instrument intermittent,

For research in small area gas streams such as arcs, it is highly
desirable to have a small sensing instrument to minimize any disturbance
of the gas stream. In addition, it is highly desirable to have a continuously

Manuscript released by author December, 1962 for publication as an ARL
Technical Report.



operating instrument. The first measuring technique described above does
not lend itself to miniaturization due to the instrumentation required in the
vicinity of the sensing area. The second technique described, calorimetric
measurement, lends itself to some miniaturization, but in its present form
is noncontinuous. To make this technique continuous requires as a minimum
that instrumentation be placed at the sampling tip which in turn hampers
miniaturization.

The objective of this program has been to conduct research leading
to the development of an instrument capable of continuous measurement of
local enthalpies in a high temperature gas stream, such as an arc. The
general technique of enthalpy measurement employed is calorimetric. The
gas sample is cooled by evaporation of a liquid coolant into the gas stream.
The liquid film protects the heat exchanger surface from excessive tempera-
ture, The structure of the instrument is maintained by forced convection
cooling or transpiration cooling. The total enthalpy of the gas is computed

from knowledge of the temperature and composition of the cooled gas sample.

The instrument has been considered for operation in the vortex-stabilized
arc at the Aeronautical Research Laboratories. The research model of the
instrument has been designed for use in this arc facility operating at a gas
pressure in the vicinity of one atmosphere and at enthalpy levels between
1100 and 14, 000 Btu/#, for nitrogen flow rates between 0.0l and 0. 125 pounds
per second,



II. LITERATURE SURVEY

An initial goal of this program was an evaluation of methods of
determining the total enthalpy of high temperature gas streams. A survey
of the open literature was conducted in which the following abstracting
sources were consulted: Chemical Abstracts 1950-1959, Nuclear Science
Abstracts 1947-1962, Physics Abstracts 1950-1959, Engineering Index
1958-1960, Applied Science and Technology Abstract 1950-1961, Ceramics
Abstracts 1950-1960, ASTIA Technical Abstract Bulletin 1960-1962, and
Heat Transfer Bibliography of International Journal of Heat and Mass
Transfer 1960-1962. The literature collected in this survey has been
organized into the following general topics and is listed in Appendix A

as follows:
1. Methods of Static Temperature Measurement in High-
Temperature Gas Streams
II. Methods of Total Temperature or Enthalpy Measurement

in High- Temperature Gas Streams

A great majority of the references,uncovered are concerned with
measurement of gas temperature as opposed to direct measurement of gas
enthalpy. The enthalpy may be inferred from knowledge of temperature if
sufficient thermodynamic data are available. In the true thermodynamic
sense, temperature exists only for a system in thermal equilibriumn. When
temperature is used as the parameter to describe the thermal state of the
gas, care must be taken to assure that the system is in thermal equilibrium.
1f the system is of the nonequilibrium type, as may readily occur in arc
heated gases, the specific temperature component measured must be
identified, since by virtue of being in nonequilibrium, the temperatures
associated with each mode of energy content are not equal. For example,
under nonequilibrium conditions the measured temperature may be due to
rotational energy, vibrational energy, electronic energy, or any one of a
number of particular energy definitions depending upon the selectivity of



the sensing technique, Determination of gas enthalpy from temperature
data in a nonequilibrium system must include consideration of all component
temperatures., In an equilibrium system, knowledge of any one component

temperature is sufficient information.

Prominent among the component temperature measurements are
optical and radiation techniques, These methods are advantageous in that
the gas stream is not physically disturbed because the sensor is placed
outside the gas stream. Disadvantages stem from the fact that the measured
quantity is averaged over several temperature regions between the sensor
and the core of hot gas. Localized values may be inferred by application of
several assumptions and use of an Abel integral technique. Errors may be
introduced by self-absorption, scattering, chemiluminescence, and many
times only the static temperature is measured. References dealing with
optical and radiation techniques are listed in subclass I of the literature

survey given in Appendix A.

More convenient properties for heat transfer analyses are the total
temperature and the total enthalpy of a gas stream. Relatively few references
to total temperature or enthalpy measurements in high temperature gas streams
have been located. References dealing with total temperature or total enthalpy
measurement techniques are listed in subclass II of Appendix A. Measure-
ments of this type are advantageous in that they allow direct measurement of
local values if the probe size is small to minimize stream disturbance. Since
the instrument must be inserted into the gas stream, the disadvantage of

maintaining structural integrity arises.

Thermocouple techniques of measuring high gas temperatures are
described by several authors. Due to structural material limitations the
present upper limit of usefulness is 6000 *R. The cooled tube pyrometer

*
(90) relates a heat transfer coefficient to the total gas temperature and is

x
References of this section are listed in Appendix A,



limited by cooling techniques and need for knowledge of gas-stream transport
properties at extremely elevated temperatures. A fast response heat-flux
probe (87) may be used to measure gas temperature if knowledge of gas
stream molecular weight is available., The need for considerable instru-
mentation near the tip of these heat-flux probes appears to limit the degree
of miniaturization possible. The pneumatic probe (91,98,102, 103, 105)
has shown satisfactory operation at temperature levels where dissociation
and ionization are not prevalent. Effects of dissociation and ionization at
the nozzle entrance and nozzle cooling have not been resolved. Again the
provision of sufficient cooling and miniaturization of the instrument appear
as significant problem areas. Measurement of the total enthalpy of a high
energy gas stream by a calorimetric technique in which a sample of the

gas is cooled to a low temperature, which can easily be measured by con-
ventional thermocouple techniques,has been described in References 94, 95,
96 and 97. Previous work at CAL (96, 97) has shown this method to be
accurate to one percent at temperature levels where thermocouples may be
used to measure gas temperature. This measurement technique is a
discontinuous method since the measurement is obtained by making energy
balance measurements with and without gas flowing through the instrument.
For this type of instrumentation, the requirement of small size is not
consistent with continuous operation since continuous operation requires as
a minimum the placement of temperature sensing elements at the tip of the

instrument.



III. EVAPORATING FILM CALORIMETRIC ENTHALPY PROBE

The evaporating film calorimetric enthalpy probe is based on the
technique of making an energy balance around a heat exchanger which
cools a hot gas by evaporating a liquid into the gas. Measurement of gas
composition and temperature as it leaves the exchanger provides the major
thermal information required for computation of entering gas enthalpy.

A general achematic diagram of the instrument is shown in Figure 1,
Hot gas enters the probe at A. The film of liquid coolant (B) is used to
cool the gas stream by evaporation of the liquid into the gas stream. At
point C, the temperature of the gas mixture (gas sample plus coolant
vapor) is sufficiently low that the temperature may be measured by con-
ventional means. For purposes of the energy balance, a sample of the gas
mixture is taken at C and this sample is analyzed for composition. The
bulk of the gas mixture and the remaining liquid layer are drawn from the
probe via tube D, The transpiration film coolant enters at E and its inlet
temperature is measured at F. The external surfaces of the instrument
{G) may be protected from the high heat flux environment by transpiration
cooling or by forced convection,

Figure 2 shows a half-section of the thermodynamic system of interest.
Writing an energy balance about the system yields:

Wo, Hoy * o, Ho, = Wnix, Hmiz, * We Mo £ [ 4 (x) dx (1)
o

gas energy in + coolantenergy in = gas mixture energy out + unvaporized
coolant energy out £ energy losses.

Wrm'xc ”rm'zc * wcc He, + %c ”yc (2)
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Rearranging:

Hy, = Heg He + —< Yo Hy + Hep K, --!éﬁ-ﬂ (1a)
A WQA ¢ W9A (n W9A I W9A
(z) dz
ng /9//
WCF - WCC + WC‘I (3)
W, W, / ¢
- _fc - Ly . L
H9A H9c+ ng ( ”‘C ”‘F) + ng ( H‘I ”‘F)t W9 / 9 ”(z)c/z (1b)
A Yo

The liquid film thickness required is small and calculations show that, for
realistic operating conditions, the average temperature of the liquid film is
very close to the vaporization temperature,

Wee / v e
Ho, = H, v Co (NAT+ Appy, + / C (r)alr]
" W [ T, P“'f e T, P‘W’

"F v
(1c)
A L
%f /v / /
+ Cp, (NdT t —— [ g (2)dz
wgﬁ rcF P" W9 H

A mass balance about the gaseous portion of the thermodynamic system yields:

W+ Wy, = Wiy, (4)



Wee
Ye. © W (5)

mix ¢

-y = 4y = Wy‘ (5a)
w‘c - Ye [+ %I . W‘F - y‘cC (6)
hy Z.
ycc
HgA H’C* /’9;c / C,,‘A'(r)dh "‘W/’ f/ CP‘W(T)JT
* v (1)

W . To L
t [— - C (r)dr ¢+ — (z) dx
- £, ¢
(ng ! 9‘C & [A’ W9A A H
F

The above equation is a general operating equation useful for any type of
evaporating coolant. Use of enthalpy tables allows simplification:

Hy = Hy + [H -H ]+ £ . H.. -H
9 "9¢ 7-_g-2- <c "<F Wo, 1Y, [“&’Tv ‘-'F]

(le)

L
1
t — () dx
7 / In

Entrance gas enthalpy = exit gas enthalpy + enthalpy loss to vaporized
coolant + enthalpy loss to nonvaporized coolant * enthalpy loss or
gain due to energy sinks or sources.

10



Equation (le) may be rearranged to simplify computation:

.‘/ACC WA' 1f
H, H - —Flu, - wdy 1
9c I-y. Ye, [ <c q‘ﬂr ] ng [‘Lﬂ “r] Wg / 9, (%) X

In these equations, the interface temperature at point C ( ““?T )
is unknown. This may be evaluated from the following implicit equation
derived by considering the heat flux arriving at the liquid gas interface and
the mass diffusion leaving in conjunction with Dalton's Law for gas mixtures.

Derivation of Equation (7) is given'in Appendix B.

Afl-‘vap [yc" -9—£:| M9 (Pr ) o
/79-ng+ 9_;(/‘7;-;/_9)-%‘.(//‘_.‘.-/{9‘,) Mg \ Fe;

A, M9 v Moy Y /79 and H, are known for a particular set of test data.
Te; 1is selected, thereby automatically setting £, , A, , Y. » H9‘. and H,.

The correct f[‘. value is obtained by an iterative solution of Equation ( 7).

Figure 3 shows interface conditions existing for several measured gas

temperatures and compositions for the N, - #,0  system at one atmosphere.

Examination of Equation (1d) indicates that for maximum range of opera-
tion, the coolant should have a high heat of vaporization and a high heat capacity
in the gaseous form., Water has been chosen as the coolant for this study

because it meets both requirements and is readily available and containable.

For determination of gas enthalpy by this technique, the following measure-

ments need to be taken:

Temperature of the exit gas stream
Vapor composition of the exit gas stream
Gas flow rate

Transpiration coolant flow rate

Energy loss or gain due to external energy sinks or sources

11
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Figure 3 INTERFACE TEMPERATURE FOR No - Ho0 SYSTEM
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These measurements are straightforward except for those of the gas
stream composition and the energy loss or gain. We have found that instru-
mentation to continuously measure water vapor concentration in the 30 to 90
percent range at elevated temperature (7 & 300 °F) is not available
commercially, To make such measurements, we have undertaken develop-
ment of an instrument for determining the dielectric constant of the gaseous
mixture. This instrument is discussed in Section VII. The extraneous energy
measurement is accomplished by use of a heat flux meter.on the surface of
tube / as denoted in Figure 2. Figure 4 is a block diagram of auxiliary
instrumentation required in support of the evaporating film cooled enthalpy

probe.

13
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1Iv, EVALUATION OF DESIGN PARAMETERS

Parameters of principle interest in design of the evaporating-film enthalpy
probe are probe working length, heat loss to be measured by the heat flux meter,
structure coolant flow rate, and pressure drop experierced by the structure

coolant flow.

A. OPERATING LENGTH OF THE PROBE

The length of the enthalpy probe is dictated by the requirement that the
temperature of the exit gas be low enough that it can be measured by a thermo-
couple and a gas-sampling probe can be used without thermal degradaticn
of the material. An exit temperature limit of 2500°R is dictated for conveniently
usable materials, Axial temperature and composition distributions within
the gas-sampling tube were determined by considering the gas sample to
be simultaneously developing thermal and hydraulic boundary layers in
laminar flow within a solid wall tube. The liquid film of coolant covering
the solid surface has been considered to be the gas tube wall, and the heat
flux arriving at this wall provides the energy for evaporation of coolant and
the energy which escapes through the liquid layer and solid surface to the
structural cooling water. The coolant vapor after evaporation provides
additional cooling of the core of gas by mixing. In the initial entry region
of the gas-sampling tube, the coolant is at its entry temperature. In this
region, the heat flux incident upon the interface provides energy to heat
the coolant to its vaporization temperature. The liquid film coclant is of
the order of 0.001" thick, and calculations show that the temperature
gradient through the film is of the order of 1°F; hence the liquid has been
considered to be totally at the vaporization temperature. Figure 5 shows
the model used in determination of probe working length, Radiation from
the hot gas sample was not included in the heat flux incident upon the inter-
face, and instantaneous mixing of the evaporated vapor with the gas core

was assumed, i. e,, radial concentration gradients were not included

15
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in the analysis. Convective heat transfer coefficients were taken from
Reference 5; high temperature transport properties of the gases were taken
from References 9 and 11, and the mixture properties were approximated
by a mass average.

In the coolant film heating region, the change of enthalpy with length
is given by:

dHg _ _ _4Nu(Rep,Pr, z/0) a’/(_g) (8)

Hg - H; Rep * Pr 12

Nu (PeD,Pr, %) is taken from Reference 5. Evaporation does not
occur in this region; hence, an energy balance directly gives the temperature
of the coolant film as a function of length. When the film temperature ap-
proaches the vaporization temperature (Equation (7)) evaporation becomes
significant. The heat loss from the gas via convective heat flux to the
interface surface provides the energy for evaporation of coolant and the energy
loss through the liquid film.

dH AW, . dw,
[Wgo* %(Z)] _d—zz - /'/9(1) ‘# = AW + g(Z) (9)

The enthalpy of the gas mixture at distance Z is given by the energy balance:

x
W9o H9f N [w9o *+ We (x)] H9 (%) - Wel(%) H"ﬁi;—,'_[’los: (%) L% (10)
The composition of the gas mixture is likewise given by a mass balance:

Wy, (11)

Yo(2) =

Combining Equations (8), (9), (10) and solving by an iterative technique allows
evaluation of enthalpy and coolant concentration of the gas stream as a function
of working length.
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Figure 6 shows the gas stream temperature and composition distribution
computed for an experimental model qf the instrument. Experimental measure-
ments of the gas temperature and composition were obtained by employing a
movable sampling tube which allowed axial traversal of the gas-sampling tube.
Experiments were conducted in the experimental probe with gas-sampling
tube diameter of 0.060'". The movable gas sampler consisted of a 0.033" x
. 049" stainless steel tube which contained insulated platinum and platinum -
10% rhodium thermocouple lead lines. The experimental data show good agree-
ment with the computed distribution. The fact that inlet gas enthalpy cormnputed
from the experimental data was in good agreement with inlet enthalpy measured
by a comparison means served as a secondary check of the data, Figures 7 and 8
show the enthalpy and composition distributions computed for two sets of inlet
gas conditions in the research model of the enthalpy probe (gas-sampling tube
diameter = 0.033"), The inlet conditions considered were low enthalpy-high
gas flow (1200 Btu/# - 0.2 #/hr) and high enthalpy-low gas flow (14, 000 Btu/# -
0.01 #/hr) which are representative operating limits dictated by use in the ARL
vortex stabilized arc. An operating length of 75 diameters reduces the gas
temperature to well within the temperature range required for ease of fabrica-
tion of available materials and provides considerable safety for probe operation

at other inlet conditions.

B. ENERGY LOSS WITHIN PROBE

Energy loss from the gas-sampling tube is computed by considering the
structure to be a composite series structure as illustrated in Figure 9. Con-

sidering conduction heat transfer, the energy loss per unit length of structure

is:
$loss . 27ry (T; - Ts, ) a2
z ! Tnet
N2 F

The only quantity not based on size of the structure is the thickness of the

liquid coolant film. This thickness may be estimated by equating the shear

18
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forces at the liquid-gas interface. Use of parabolic velocity profile in the

laminar gas flow and a straight-line velocity profile in the liquid film

provides:
St L My My Y (13)
q] 7 Vg wgo 2

For the research model configuration operating at an average interface
temperature of 200 °F and an average structure coolant temperature of

100 °F, the heat loss is 16 Btu/hr. per inch of length. This loss figure may
be reduced by operating the structure coolant at a higher temperature, The
figure cited is the maximum value which the heat flux meter will be required
to detect.

C. STRUCTURE COOLANT FLOW RATE AND PRESSURE DROP

The mass flow rate of the structure coolant is dictated by the need for
providing a sufficiently high heat transfer coefficient to insure structural
integrity of the instrument. The stagnation heat flux incident upon the probe
is computed from Equation (14) below taken from Reference 2. Although this
equation has been derived for supersonic flow, it has been shown to be appli-

cable to subsonic plasma flow in Reference 4.
[ -0.6 0.1 0.4 052 .\ Hp | /du Ve
£ - 0.763 Pr ""(pm), (PH); 1-(Le -I)I 7;—) (Hs=H,) (14)

The stagnation point gas density has been evaluated from:

615 +0.040 P,
P p g (08I +0.04 Loy, "7F

il yAaLs 15)
A P (HI (

This equation is discussed in Appendix C. The stagnation heat flux upon the
0. 10" hemispherical nose enthalpy probe has been computed for several
operating conditions. At aa enthalpy level of 14, 600 Btu/# the stagnation
point heat flux is of the order of 1500 Btu/ t‘tz.cc. The structure coolant flow

23



rate has been computed as a function of stagnation heat flux by use of con-
ventional heat transfer relationships concerning turbulent liquid flow in a
tubular annulus. Figure 10 shows the flow rate required to prevent local
boiling at the tip of the probe, Figure 11 shows the pressure drop associa-
ted with these flow rates traversing the research model of the enthalpy probe.
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V. ANALYSIS OF ERRORS

Errors in measured enthalpy may occur from two sources, those due
to inaccuracies in the component measurements or those due to physical
processes occurring which are neglected in the computational procedure.

The latter type of error includes radiation heat flux impinging upon the gas
sampling tube cavity which causes evaporation of the coolant not associated
with heat transfer from the gas sample, and errors in the gas stream compo-
sition due to chemical reactions between the nitrogen and the coolant gas.

The chemical reaction error may be alleviated by performing a complete
quantitative analysis of the exit gas stream and accounting for the enthalpy
connected with each component in the exit gas stream in the energy balance;
however, it is much more desirable to make only a two-component (gas -coolant
vapor) chemical analysis of the exit gas stream since this is more readily
adaptable to continuous operation. In the fallowing, the maximum error due
to component measurement is computed in addition to the level of error

anticipated due to radiation and chemical reaction.

A, ERROR DUE TO COMPONENT MEASUREMENTS

The operating equation written in simplified computational form is:

L
y,c %F ,
Hy = Hy + —€ |H ~H, |+ Hepo =Hp |2 77— z)dz 1f
9" "9, " /-y‘c [‘c u”v:l Wy, [tz,rv cF] W, J, Zul (19)

An analysis of several inlet-gas and coolant conditions, encompassing the

full range of instrument operation, indicates that the enthalpy of the inlet gas

is divided as follows. The exit-gas enthalpy (first term on right side of
Equation (1f) accounts for 10 percent, the enthalpy contribution to evaporation
and heating of coolant vapor (second term) accounts for 65 percent, the enthalpy
contribution to heating of the liquid coolant (third term) accounts for 7 percent,

and the enthalpy contribution to heat loss within the instrument (fourth term)
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accounts for the remaining 18 percent. The errors anticipated in the individual
component measurements are given in Table 1 below.

TABLE 1
ERRORS ASSOCIATED WITH COMPONENT MEASUREMENTS

Basis for
Measure- Estimated Error
ment Sensor Error Selection
l/9 Platinum-Platinum
¢ 10% Rhodium Thermocouple £ 0.5% Manufacturer's
Suggested
Error
H, Platinum-Platinum 10%
¢ Rhodium-Thermocouple £ 0.5% "
H, Copper-Constantan
F Thermocouple *1,0% "
%F Precision Rotometer *1,0% a
ng Precision Rotometer +1,0% "
H[ . Evaluated from Equation (7) *1.1% Error Analysis
1‘17;‘, of Equation (7)
/g (z) Lz Heat Flux Meter’ + 4,0% Calibration
PVT Measurement £ 2,5% Error Analysis
gq of Equation (21)
< Dielectric Constant +1,0% Calibration

The maximum error anticipated from Equation (1f) was computed by standard
techniques. For illustrative purposes, the error contribution of the second

term of the right side is given below.
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y y[ ’ 17
A= —2X_(4 -H. = —C_ 4 H =A+A
/_yc (cc ‘4447'1,) ,-yﬂc ‘C tl,_grv
Btu
He. 2 1100
<c # (16)
180 Btu

Pety,,®

The weighting factor between A’ and A” is in the ratio 0.837:0.163 in the

worst case.

Ye ’ yg

From Table 1 the maximum error in A’ fora specific gas mixture ( y9 = 0.5)

is ‘i‘—’f = 0.025 + 0.005 + (o 025) = 0.055.
Likewise A7 = 0.061
Using the weighting factors

% = 0.837(0.055) + 0.163(0.061) = 0.056

The second term of Equation (1f) is weighted at 0.65 hence the error in

computed enthalpy due to this term is 0,65(0,056) = 0.037. Considering the
other terms in a similar manner indicates that the maximum error in measured
enthalpy is 4.9 percent if the exit-gas composition measurement is made to an
accuracy of 2.5 percent. An exit-gas composition measurement of one percent
error reduces the maximum computed enthalpy error to 2.9 percent. Figure 12
shows the maximum anticipated error as a function of the measured gas compo-
sition, ThisFigure demonstrates the need for accurate gas composition measure-
ment.
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B, ERROR DUE TO RADIATION INTERCHANGE WITH SURROUNDINGS

The gas-sampling tube acts as a black body absorber of radiant energy
entering the sampling tube. This energy is absorbed by the liquid layer surface
and hence evaporation of coolant not due to convective or radiation heating from
the gas sample occurs. This additional input of energy into the thermodynamic
system is a cause of error. Extraneous radiant energy may arrive at the
sampling tube from two sources, from high-temperature solid components,
such as the electrodes, or from the highly excited gas of the arc. The radiation
entering the gas-sampling tube from a hemispherical surface electrode is given
by:

Q@ = oe rrr‘(T’?)z [rs'- 7;,‘] (17)

where r is the radius of the gas sampling tube

4 is the radius of the electrode

V4 is the distance from the electrode to the probe

T is the surface temperature of the source

T is the probe wall temperature

€ is the emissivity of the electrode material

o is the Stefan-Boltzmann radiation constant

Selecting an electrode temperature of 5000 °R and an emissivity value of 1
(worst possible case), the radiation energy entering the probe from this

source is one percent of the gas energy carried into the probe by the gas when
the distance / is 1.7R. It may be concluded that the radiative energy error
from this source is insignificant when the probe is placed more than one source

diameter from the source.

Radiation entering the gas-sampling tube from the surrounding sheath

of radiating nitrogen is computed by considering the probe to be located at
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the center of the base plane of an infinitely long cylinder of gas of diameter
& . The equivalent length for this configuration is givenas 0.9 by
Reference 1 (page 393). Radiation entering the sampling tube is then:
Q=rr*s 09460 Tg4 (18)
€//. for the high temperature nitrogen was taken from Reference 8. Opera-
tion at 1 atmosphere and an average temperature of 8000°K with a gas volume
diameter of one inch allows 0, 46 Btu/hr to enter the gas sampling probe.
Under these conditions the gas energy carried into the probe by the gas sample
is 140 Btu/hr; therefore, the error from this source of radiant energy is 0. 33
percent, It is concluded that use of this instrument in the ARL Vortex
Stabilized Arc dictates an error due to stray radiant energy of less than one

percent.

C. ERROR DUE TO CHEMICAL REACTION WITH COOLANT VAPOR

Figure 7 indicates that the average temperature of the vapor mixture
in the vicinity of gas entrance is sufficiently high that the water vapor will
dissociate. This provides a high temperature gas mixture of H, HZ' o, OZ'
HZO, OH, N, and NZ at a pressure of approximately one atmosphere, The
chemical reactions between these gases have been considered for two limiting

cases:
(a) Chemical equilibrium of the gases existing at all times,

(b) Formation of sideproducts in equilibrium concentration with

neglectable rate of reverse reaction.

These two cases provide the limiting conditions upon the amount of reaction
product which will be present in the exit gas. The chemical composition of
the exit gas was computed for the same initial conditions as the enthalpy
distribution computed in Figure 7. The principle chemical reactions con-

sidered were the dissociation of water, viz:

Ha0 == H, +% 0, (19)
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and the nitrogen-oxygen reaction:
N, + 0, = 2NO (20)

Equilibrium constant information was taken from Reference 10 for reaction

19 and from ReferenceslO and 13 for reaction 20. Computations were made
for a pressure of one atmosphere in all cases. Figure 13 is a plot of the
oxygen in the vapor mixture as a function of axial length, The amount of
nitrogen used in the nitric oxide reaction under equilibrium conditions is

also shown in Figure 13. If chemical equilibrium exists throughout the
gas-sampling tube the amount of nitrogen used in chemical reaction products
in the exit gas stream is less than one part in ten thousand, which represents
essentially zero error in the measured enthalpy. In the other extreme, the
maximum amount of side product that can exist in the exit gas is the maximum
equilibrium amount formed in traversing the gas-sampling tube. Here, the
hypothetical assumption has been made, that none of the nitric oxide formed
reverts to component nitrogen and oxygen in the cooler portions of the gas-
sampling tube. The maximum amount of nitrogen used in the nitric oxide
reaction is 0. 18 #mole/#mole of nitrogen in the gas mixture. As the gas
mixture cools, the hydrogen and oxygen reassociate such that at temperatures
below 4000 °R, all the water is again reassociated. The formation of NOz by
reaction of the NO with oxygen may be neglected since, in the high tempera-
ture region where the concentration of oxygen is high, the reaction equilibrium
constant is very small and at low temperatures (2000 °*R), where the equilibrium
constant is of reasonable magnitude, the concentration of oxygen in the vapor
mixture is very small. The reaction of nitrogen with hydrogen to produce
ammonia was not considered here because this reaction is known to require
high pressure and a catalyst to maintain a reasonable rate of reaction. The
cooled gas stream, under the above assumptions which produce maximum

amounts of reaction products, is of the following composition.

33



300W HO¥YISIY 40 HLONIT VIXY SA 3AIX0 JINLIN ANV NIDAXO 40 NOILVEINIONOD €| @4nbi1y

a/x
$°0 %0 €°0

N
(-]
-]
(=4
”~
o
[ -]
o

-—————— ——— e -
J — . H H
frereencd i
: : : i

; : : : : NG
HI . } H H R LS e > '
H r m m m. ; H : N: WJg X

H 1 H H H -

: : : : ' ON 3704
dow e eae R 4-- + R pacaaaaan pesmavnand Posmomcan —prmneeanan W.- “ E .
: : : : : : : : i :
dreneenees O ST foreencens frnenns + drrenens dereneenes frmrenens oeenees +-
H H : : : : H : ' s
P m P m R 2T .
: : i i H i : :
Pt frovse e oo SR S i T 3700
P R B P m P
; ; : ; m : : i ; ;
. . : H . H
preaseans e : ! : : : “ ; : 30
: : i i H : i : i i :
P P S A "
: ; doeeeeenas TS 4 deeaeeones ponsen seechocennnnd RPN S— LS I
: i SINNI €600 = o | : : : i
b T R 00
P Powpsnro=e o 0 b 8 b b
H AT DU : . 08y ... e S I F A SR R i
: ! : 91/n19 000‘at = P4 : d ¢ : g t ¢ ¥ .
R R ——— —
S S S i P
freerennen deenceenne drsreenns deeeeaee 4 4 + ; + i : R :
N I fereeees e I I i e d i H i ; : :

........ T

ON 3770M



Component Mass Fraction

H,0 0.880
N, 0.100
NO 0.019
H, 0.001

If chemical reaction had not occurred, the composition would have been

89 percent water vapor and 11 percent nitrogen. The error in measured
enthalpy due to neglect of the chemical reaction products is seven percent.
Under assumption of maximum product formation by chemical reaction of
the sampled gas with the vaporized coolant, the error in the measured
enthalpy is seven percent. Due to the severity of assumptions made, it is
believed that the actual error will be considerably less than this maximum
value. If a complete quantitative analysis of the gas stream is made, this

error can be avoided.
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V1. EXPERIMENTAL PROGRAM

In the course of this program three experimental models of the evapo-
rating film calorimetric enthalpy probe have been constructed, On the basis
of information gained from these models, a research model of the instrument
has been fabricated. The experimental models were built to yield information
about this basic technique of calorimetric enthalpy measurement, and minimum
size was not considered as a principal criterion. The research model, which

is to be used in an arc, was miniaturized and has an outside diameter of 0. 10",

A, EXPERIMENTAL MODELS

The first experimental model has the following dimensions: O.D, =
0.185'", gas sampling tube I.D, = 0.020", L = 2.0'". This instrument is
shown in Figure 14. The coolant film is formed by 20 - 0.010'" holes in the
inside tube spaced equally over the first inch of length of the gas sampling
tube. The instrument is fabricated of stainless steel and brass. The structure
of the instrument is maintained at low temperature by forced convection cooling.
Forced convection cooling was chosen as the thermal protection mechanism
for the present models since it does not contaminate the gas stream and requires
less control. In the future, when yet smaller size and higher heat flux are
primary objectives, another type of thermal protection system will be required.
Evaporative film cooling of the entire structural surface offers an attractive

possibility of meeting both objectives.

The second experimental model fabricated was made larger in order that
information concerning axial temperature and composition distributions within
the gas-sampling tube could be obtained. This model is two inches long, has
an O.D of 0.312", and a gas sampling tube I.D. of 0.070'", Initially, the
coolant film was formed at 10 - 0.0135" holes equally spaced over the first
inch of the gas-sampling tube. In a modified version of this model, the 0.070"
tube was covered with a 0.060'" I, D, tube and the coolant film was formed by
use of a 0.20" length of 0.003" screen at the tip of the probe. Figure 15, a
drawing of experimental model 2, shows the general type of probe configura-
tion and construction used in the experimental models.
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B. RESEARCH MODEL

The research model of the enthalpy probe has the dimensions O, D, =
0.105", gas sampling tube I. D, = 0,033", and length = 2, 75". The probe is
encased in a forced convection cooled strut designed for use in the ARL Vortex
Stabilized Arc Facility, The strut has an outside diameter of 0, 375" and a
working length of 7 inches which allows traversal of a 3 1/2'" diameter gas
stream, Figure 16 shows the research model itself and the research model

encased in the strut,

Figure 17 shows the fabrication details of the research model, The
fabrication materials are mainly stainless steel and brass, The evaporating
film is formed by 60 holes of 0, 004" mean diameter (5 rows of 12 holes of
each row) placed over the first 0, 060' of the gas sampling tube, A 0,312"
strip of 0, 002" platinum sheet containing three 180° twists has been placed
at the exit end of the gas sampling tube to induce mixing of the exit gas and
coolant vapor to insure that the temperature and gas sample taken at exit are
representative average values. The gas sampling tube and exit gas thermo-
couple (platinum-platinum 10% rhodium) are brought through the strut coaxially
with the gas exit tube. The gas exit tube has been provided with a heater to
prevent condensation of water vapor from the gas mixture. A copper-constantan
thermocouple soldered to the gas tube surface allows the wall temperature to

be monitored.

The structure of the research model is cooled by forced convection of
water in a 0,010" annulus between the heat flux meter surface and the outside
wall of the probe. The structure coolant flows from the afterbody to the tip in
one half of the annulus, reverses direction at the tip, and flows from the tip
to the afterbody in the other half of the annulus. This flow pattern is maintained
by two 0.010" copper wires placed in the structure coolant annulus as shown
in Section A-A of Fig. 17. The open area for flow reversal is shown in the
tip detail of Fig., 17.

Heat losses through the evaporating coolant film to the structure coolant
are measured by a heat flux meter placed on the inside surface of the structure
coolant channel, The heat flux is obtained by measuring the average temperature

differential across a thickness of electrical and thermal insulating material,
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Since an average temperature value is desired at each sensor location, resistance
thermoelements have been employed as the sensors, The resistance element

is nickel foil of 0,00035" thickness. The insulating material is polyvinylidene
chloride film and lacquer, The nickel foils are placed in a "U" shape at two
distances from the inner structural coolant wall, The closed end of the "U"

lies at the tip of the probe and the lead lines are brought from the probe after-
body by copper wire. The heat flux meter detail is shown in Fig. 17, Resistance
of the foil elements is measured by a Wheatstone Bridge Circuit and a light beam
galvanometer, At 80°F the resistance of the elements is:

1. 3662 £

>
'

1.5849 N

The heat flux meter has been calibrated by measuring the temperature
differential of the structure coolant water when the gas flow through the probe
is pulsed. This calibration technique is analogous to the continuous instrument
calibration used in previous calorimetric enthalpy probes (Ref. 3), Heat loss

to the structure coolant is given oy:

j’”(x)a(x = 209.6 [%,- Ry + 0.2/87]
[

T'he temperature of the entering evaporating film coolant is measured
by a copper-constantan thermocouple at the coolant's entry into the probe after-
body. The probe afterbody is fabricated of stainless steel and is made in three
parts to facilitate assembly., The parts are sealed with sgilicone rubber and
held together by a press fit within the inner strut tube. Solder joints are used

throughout to prevent leakage.
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C. EXPERIMENTAL TEST APPARATUS

Experimental enthalpy determinations utilizing these instruments
have been made using a laboratory gas heater in which nitrogen is heated
by passing through the walls of a porous hollow graphite cylinder. The
cylinder is resistance heated by a D, C. power supply. This heater
produces a gas temperature of 4500 °R and a heat flux of the order of
300 Btu/ftzsec.

The philosophy of the test program has been to evaluate the accuracy
of the instrument at gas stream temperatures which can readily be measured
by other more conventional techniques, yet be high enough to give a mean-
ingful test of the evaporation technique of enthalpy measurement. Testing
has been done between temperatures of 2200 and 4300 °R. Gas temperatures
below 3500 °R have been measured by platinum-platinum 10% rhodium thermo-
couples which have been radiation shielded and account has been taken of non-
total stagnation conditions at the thermocouple. Gas enthalpy at temperatures
above 3500 °R has been measured directly by a calorimetric enthalpy probe
of the on-off type described in the Introduction (Reference 3). For purposes
of this program, an enthalpy probe of the on-off type with an outside diameter
of 0.10" was fabricated. This probe contained all instrumentation in the
afterbody which, of necessity, increases response time of the instrument;
however, this was not a drawback for its intended use. This enthalpy probe
was checked for accuracy at gas temperatures between 2300 and 3300 °R and
showed an average deviation of 1.5 percent from the enthalpy corresponding
to the gas temperature measured by the thermocouple system described

above.

Experimental enthalpy determinations were made only after the gas
heater had reached a steady state operation. The gas heater has a character-
istic of slight rise in gas temperature with time when in steady operation.
Calibrations showed this to be a linear rise; hence, the temperature or the
enthalpy of the gas stream was determined before and after each enthalpy
determination was made with the test instrument., A linear interpolation of
the gas temperature data served to give the gas temperature at the exact

time the test enthalpy determination was made.
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The experimental test apparatus used in enthalpy determination tests

is shown in block form in Figure 18. Gas is drawn through the enthalpy
probe by a vacuum system. The evaporating coolant water is supplied by

a calibrated burette maintained at constant pressure head by a liquid supply
system. The coolant flow rate is determined by stopping the liquid supply
and measuring the time required for 1 cc to flow into the system. The gas
flow rate and the structure coolant flow rate are determined by calibrated
rotameters. The water vapor in the gas mixture is condensed, and the gas
is dried before the flow rate measurement is made. Thermocouples placed
in the inlet and exit structure coolant lines allow evaluation of the energy
loss from the gas-sampling tube of the experimental models by the technique
of pulsing the gas flow through the tube. Due to lack of commercially available
instrumentation to provide a gas composition measurement, we have con-
currently with the development of the enthalpy probe developed an instru-
mentation technique for continuous measurement of the gas stream composition.
Because of this lack of instrumentation at the time of testing, the gas compo-
sition was determined by measuring the pressure change, in a flask of
calibrated volume, due to condensation of the water from the vapor mixture.
The gas-sampling flask and all lines connecting the flask and the probe system
are thermally insulated and provided with individually controlled heaters in
order that the whole system can be maintained at uniform temperature as
determined by the eight thermocouples. Before an enthalpy determination
test is made, the sampling tube is dried, heated and evacuated. The whole
sampling system is heated and allowed to come to an equilibrium temperature
7 of the order of 700 °R. When equilibrium is established the flask is
sealed and the initial pressure /4, is recorded. During the test, vapor
mixture is pulled through the sampling sting and a portion of this gas is
allowed to flow into the sampling flask. The flask is again sealed. After the
test, the sampling system is allowed to reach equilibrium and the pressure,
Pz , and temperature, Tz , (& T00°R) are recorded. The entire
sampling system is cooled to a temperature of approximately 60 °F and at

equilibrium the pressure, P"a , and temperature, G , are again recorded.
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The mole fraction of nitrogen in the gas sample is determined by applying
the ideal gas law and accounting for the volume change of the system due

to changing pressure level in the manometer.

P, P,
-;3’— [0.450 +0.00285 (30.00-/5)] - 7,’ [_0.450+ 0.00285 (30.00 - P, ):]

Y/V =

2 (21)

L2 [o.450+ 0.00285(30.00-A) | - i [o.uo* 0.00285 (30.00-/9,)]
T 7

The heat flux incident upon the enthalpy probe is obtained by measuring
the transient temperature rise of a copper disk of known size, weight, and
initial temperature when exposed to the high temperature gas stream. The
back face of the copper disk is thermally insulated to prevent rearward

heat loss.

D. EXPERIMENTAL TEST RESULTS

Enthalpy determinations have been made between gas temperatures
of 2200 and 4300 *R, utilizing water as the film coolant. The test data are
fabulated in Table 2 and plotted in Figure 19. These data shown an average
deviation 2.3 percent between the enthalpy measured by the evaporating film
calorimetric enthalpy probe and the enthalpy as determined by the comparison
method. The maximum deviation obtained was 6.0 percent. Maximum heat

flux encountered in the testing was 270 Bt:u/ft2 sec.

Preliminary test data obtained with the research mcdel indicate an average
deviation of 3, 75 percent with a maximum deviation of 6,0 percent, Testing

and analysis of the research model will continue.

Figure 20 shows enthalpy of the component gas streams as a function

of temperature. Data are taken from References 6, 7, and 9.
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Table 2

ENTHALPY DETERMINATION TEST DATA

PROBE Tgos Hoas % “ ’f-ezz't % excit Hprobe |10 4"‘_“
R 8¢y, e ‘#/Al‘. #/‘ﬂ %w #”3‘/"[«2 % W;”‘—g
£-0.070 2636 19,660 0.806 0.70 2222 0.023 | 20,080 101.8
" 470 18,350 0.86 0.75 2021 0.030 17,950 98.5
» 2270 16,700 0.87 0.73 2054 0.008 16,470 98.8
" 2750 20,580 0.89 0.78 2206 0.062 19,884 87.0
" 2890 21,800 0.84 0.75 2253 0.080 22,740 104.0
" 2897 21,900 0.86 0.76 2013 0.106 21,815 99.6
. 2980 22,600 0.84 0.7 2040 0. 131 23,580 104.0
" 3146 24,000 0.84 0.73 2180 0.090 23,010 96.2
. 3274 25,060 0.84 0.75 2106 0.138 25,060 100.0
£-0.060 2068 23,300 0.65 0.98 1604 0. 14§ 23,750 102.0
. 2079 22,590 0.67 0.87 1580 0. 150 23,040 102. 1
" 2978 22,590 0.67 0.78 1596 0.170 23,720 105.0
. 3000 22,760 0.67 0.87 1613 0. 150 23, 300 102.6
. 2147 15,750 0.79 0.98 1316 0.050 15,710 89.9
. 3534 27,300 0.59 0.78 1720 0.185 26,633 87.6
" 3880 30,275 0.54 112 1798 0.202 31,600 104.5
" 4260 33,570 0.56 1.21 1799 0.240 33,400 99.7
€-0.060* | 2867 21,650 0.38 0.26 2385 0.037 21, 644 100.0
=+ | 2899 21,919 0.40 0.33 2277 0.064 23, 200 105.0
= ! 2860 21,580 0.45 0.3 2222 0.077 21,400 9.0
= * 1 2905 21,060 0.48 0.26 2174 0.091 22,470 102.5
" s | 2908 21,960 0.48 0.37 1900 0. 102 21,840 89.5
» +| 2908 21,960 0.4i 0.37 1786 0.114% 21,220 97.0
" * 1 2050 22,330 0.37 0.33 1690 0.178 23,880 106.0
R-0.098 2280 16,788 0.2 1.18 (1Y} 0.095 15,700 194.0
" 2270 16,700 0.18 .18 690 0.068 16,630 94.0
. 2280 16,788 0.18 1.10 675 0.100 17,160 102.0
. 017 22,020 0.18 0.99 764 0.075 21,750 98.5

*AXIAL TEMPERATURE AND CONCENTRATIOM DETERMINATION TESTS
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VII. VAPOR MIXTURE COMPOSITION MEASUREMENT

For the purpose of enthalpy measurement by the calorimetric technique
investigated in this report, it is required that composition of the exit gas
stream be determined. For the present considerations a two-component
system (NZ - HZO) which consists of one condensable and one noncondensable
gas is of interest. In the temperature range of operation, condensation of
one species is a definite possibility hence operation at a temperature of about
300 °F is required. To meet the objectives of the over-all program the
measurement must be continuous, have a response time of less than a second

and have good accuracy in the 10-90 mole percent water range.

A survey of commercially-available gas-phase composition measurement
instruments indicated that water vapor content of gas streams may be measured
by using heat of absorption, thermal conductivity, infrared techniques, or gas
chromatograph techniques. Each of these four techniques has basic short-
comings which negates its use for the intended measurement. A shortcoming
common to all is the maximum operating temperature of the order of 120 °F,
For the use intended, a specially fabricated instrument is required. Other
more prohibitive shortcomings are as follows. The heat-of-absorption tech-
niques are limited to concentrations of the order of three mole percent and
extension to larger concentrations is prohibited by the rapid decay of the
absorbing material due to the large amount of water present. The thermal
conductivity measurement instruments have response times of the order of
minutes and insufficient accuracy (2%) for the use intended. Instruments
based on infrared measurement techniques have response times of the order
of ten seconds and are limited to concentration levels of ten percent water
vapor. The gas chromatograph techniques are essentially noncontinuous

because the gas can be sampled only at approximately five minute intervals.

An analysis of the physical properties of the nitrogen-water vapor mix-
ture indicated that the dielectric constant and the specific heat are physical
properties attractive as quantitative measurement devices. Conceptual

instrument designs based upon these properties were evaluated, The dielectric
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constant, on the basis of superior response time characteristics, was

selected for evaluation as a composition measurement parameter.

A. COMPOSITION MEASUREMENT BY USE OF DIELECTRIC CONSTANT

Theoretical development of equations for the dielectric constant of
materials is given in many texts on physical chemistry (Reference 12 for
example). The nitrogen-water gas mixture consists of molecules which
possess only induced electric moments (nitrogen) and molecules which
possess in addition a permanent electric dipole moment (water). The
mixture is classified as a substance of low density and the electrical field
is essentially static, i.e., the frequency is less than 1010 cycles/sec.
For the general case of a gas molecule possessing a permanent dipole

moment the dielectric constant is:

) £ M
D=1+4mNL (oc+3z.r) (22)
M M?
M. M 22
(D /)p 4mv(x+3lr) (22a)

The term on the right side of Equation (22a) determines the magnitude of the
electric moment which may be expected to build additively from component
partial electric moments. By equality, the left side term also is the sum of

partials, hence:
M M M,
Dm=1) — = ¥, (D,-1) =L + v, (D, -1) £ (23)
(m )P 9(9),09 ,C(L')/ot
Utilizing the ideal gas law this may be simplified to:

D,-1-= )/9(09—/)»«(/- Yg)(Qc-/) (23a)
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rearranging:

- (Dm"’)"(D.c',) - D.c'Dm
9 (Dg-1)-(D.-1)  D-Dg

14 (23b)

From Equation (21):

P
(D-1) o p ot —
7
The quantity (D -/ ) is shown as a function of 7 in Figure 21 for the

gases nitrogen, water, and carbon dioxide.

The capacitance of a capacitor is given by:

A DA

C = 4 (24)

in which A is the active plate area and o is the spacing between surfaces.

/3 is a constant based on configuration. For a plate type capacitor

/3 =0.0885when A and A are in centimeters. For a specific condenser:
C = KD K = LA (24a)
d
hence
Cc-Cm
Y, = =—— (25)
9 Ce-¢y

The mole fraction of nitrogen in the mixture may be evaluated by a simple
lever law applied to the capacitance of the mixture, gas, and water vapor.
The capacitance of the mixture and gas may be evaluated by passing the
respective vapor through the capacitor at known temperature and pressure.
The capacitance of the pure water vapor may also be obtained in this manner;
however, it is difficult to obtain a pure water vapor. This difficulty may be
circumvented by measuring the capacitance of a third readily available pure
gas (carbon dioxide for example) whose dielectric constant is known. Capaci-

tance of the water vapor at similar operating conditions is:
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Cco, = Cw

C”0=KD”0=[__.2___.2_ D/-/O (26)
2 2 Deo, - Dn, 2

For the general case of operation at a pressure, A , different than

standard atmospheric pressure, /A, = 29.92' Hg, the equation for le,o takes

the form:

P
,+750— [DH,O (Po'r)' ,—J
Cuyo (PT) = [Ceoy(PT)-Cuy(RT)] | — (26a)
I [Dcaz (R:7)- DNZ(PovT)]

and for the general case:

1+ = (D(Rs,T)-1)
o

D(R,T)

C(AT) = c(P,,T) (26b)

D ( P,,T ) may be evaluated from Figure 21. In using Equation (25) to
determine the gas composition it is important that the pure gas capacitances
be evaluated at the identical pressure and temperature conditions as the gas
mixture conditions. These pure gas capacitance values may be inferred
from calibration values taken at a specific temperature and pressure by use
of the above equations. To eliminate need for accurate knowledge of the
capacitance of the capacitor (i.e. the value of K* )} at a multitude of opera-
ting conditions, it is recommended that a calibration of the instrument be

conducted before and after each period of testing.

B. ELECTRONIC READOUT SYSTEM FOR DIELECTRIC
MEASUREMENT

The use of dielectric constant as the quantitative tool for measurement
of vapor phase composition resolves itself into a measurement of capacitance
of a specifically designed capacitor. For the purpose intended it is desirable

to have a continuous measurement of the capacitance which may readily be
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recorded on a conventional laboratory recorder. Conventional measure-
ment of capacitance calls for placing the unknown capacitor across a
calibrated variable capacitor and regulating the calibrated capacitor until

a standard resonance frequency is obtained. The difference in readings of
the calibrated capacitor is equal to the capacitance of the unknown capacitor.
This technique does not lend itself to continuous recording of capacitance.
The electronic system developed in this program for automatic recording
of capacitance is as follows. A crystal oscillator and a cathode follower
are used as a signal source to excite a high Q circuit (Q = ratio of
reactance to resistance of the system). The Q c'%ircuit is adjusted to a
point just off the resonance frequency of the signal source, care being
taken to remain on the linear portion of resonance curve as shown in
Figure 22, A change of capacitance due to change of dielectric properties
of the gas in the capacitor is reflected as a change in frequency which, on
the linear portion of the resonance curve, is directly proportional to a
change in output voltage of the electronic system. The AC voltage
developed in the Q circuit is biased negative, by a diode, an amount
approximately equal to the amplitude of the AC voltage developed in the

Q coil. This AC voltage is irnposed upon one grid of a half of a dual
triode and the AC signal is rectified between the grid and cathode of this
tube. The other half of the dual triode has its grid maintained at a constant
voltage, hence, a readout system connected between the cathodes shows a
change proportional to the frequency of the circuit which in turn is propor-
tional to the composition of the gas in the capacitor. Figure 23 shows the
electronic circuit diagram for the system. A 0.1 uuf change of capacitance
provides an output of over 100 millivolts. The millivoltage output of the

system is recorded on a recording potentiometer.

The capacitor used for measurement of gas composition was designed
to optimize the percentage of capacitance due to the test gas stream and the
response time of the unit, which is directly related to the time required for
gas to traverse the unit. The capacitor configuration is shown in Figure 24,
This capacitor allows a capacitance change of 0.1 xuf (100 millivolts on

the readout system) for a 100% change of gas stream composition. Capacitance
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of the unit is 23 4 # and the unit has a flow traversal time of one-half
second at a flow rate of 100 cc/min which is the minimum rate of flow
expected to be drawn from the gas-sampling tube of the enthalpy probe.
For most enthalpy probe operating conditions the response time of the
dielectric vapor composition measuring instrument is of the order of a

second.

The instrument was initially evaluated by using the gases air,
oxygen, nitrogen, helium, carbon dioxide, and acetylene. The measured
dielectric properties of these gases compared favorably with values taken
from Reference 14. The maximum error encountered was two percent,
Experience gained in operation of the instrument has shown composition
measurements must be made by making all component measurements at
the same pressure level. This is due to the fact that the capacitor is
sealed with an "O'" ring which allows slight movement (due to changing
internal pressure) of the conical core which causes slight changes in the
capacitor spacing, hence the value of K is not constant as required for
validity of Equations (24a) and (25). This problem can be overcome in
redesign of the capacitor. For present operation, the pressure level of
the calibrating gases (CO2 and Nz) is adjusted to the pressure level of
the gas mixture whose composition is desired. A second problem encoun-
tered in operation was a severe instability problem of the readout milli-
voltage. A major source of this instability was found to be fluctuations
in the input voltage. After taking precautions to minimize the input
fluctuations, the severity of the readout instability was greatly reduced,
although not completely eliminated. For present operation, the instrument
calibration, by passing CO2 and N2 through the capacitor, must be repeated
at intervals of approximately one minute. It is believed that further reduction
in readout instability may be attained by taking precautions against mechanical
vibration, thermal currents within the electronic system and by providing
further isolation of components. The goal of this phase of the program is to
provide an instrument which requires calibration only before and after tests,

hence, operation for periods as long as an hour is desirable.
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The random variation of the millivoltage output about the mean value
is about one percent of scale or about one millivolt., It is believed that gas
mixture composition is presently measured to within two percent and that
as experience and skill are gained in the operation of this instrument, and
if the above mentioned improvements in the system are incorporated, the

level of error may be decreased to less than one percent.
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VIiII. SUMMARY

A technique of making a calorimetric enthalpy measurement of high
energy content gases, by utilizing an evaporating liquid film to cool a gas
sample, has been investigated, Temperature and composition of the cooled
gas sample provide the major information for an energy balance on the system
which in turn provides the total enthalpy of the entering gas. The system has
distinct advantages over previous calorimetric enthalpy measurement techniques
inasmuch as it lends itself to a considerable degree of miniaturization and it
may be operated continuously, overcoming a serious disadvantage of previous
techniques. Use of water as the evaporating film coolant in an arc-heated
nitrogen atmosphere has been considered in detail, A research model of the
instrument, designed to measure an enthalpy of 15,000 Btu/#, has been
fabricated. This instrument has an outside diameter of 0. 1" and is capable of

operating continuously if the gas composition is measured continuously.

The accuracy of the technique has been demonstrated by a series of
enthalpy determinations made at temperature levels between 2200°R and
4300°R. These tests show an average deviation of 2, 3 percent (range = 0 to 6,0
percent) between the measured enthalpy and that obtained by a comparison

technique,

The greatest difficulty involved in this technique of enthalpy determination
is continuous measurement of gas mixture composition. To alleviate this
difficulty, an instrument using the dielectric constant of the mixture as a
quantitative tool has been fabricated and tested. Although problems have been
encountered with long-term stability, it is believed that this instrument has
the potential of providing the required continuous composition measurement and
that this potential may be realized with some changes of the existing instrumenta-

tion.

Results to date show the evaporating film coolant technique of enthalpy
measurement to be accurate, capable of continuous operation and conducive to

fabrication of miniature instruments,
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APPENDIX B
GAS-LIQUID INTERFACE CONDITIONS

The following approximate analysis allows determination of the
liquid-gas interface temperature at any point within the gas-sampling
tube. In particular, the value at point C in Figure 1 is of importance
in the total enthalpy computation by Equation (le).

Consider the gas velocity at the interface to be of order zero, then
by equimolal counterdiffusion the velocity of water vapor leaving the

interface is given by:

DC"9 dyc _ Dc-l dyg
-y dr  1-y. dr

Y = - (B-1)

Multiplying by density, the mass flux of coolant vapor leaving the interface
is:

. (P Ce-g); dyg |
/o¢:'1,¢'|;_ ,'yC[ ‘ der |1; (B-2)

The heat flux arriving at the interface may be written in a similar form:

Y

If the Prandtl and Lewis numbers are equal to one, the profiles for velocity,

A dH
T W| (B-3)

»
¢

enthalpy, and composition by similarity become:

“ _ H-H _ Y Y

(B-4)
Uo Ho - H; Ye,; - Ye,

in which the subscript "0 " indicates the centerline of the tube. Combining
Equations (B-1), (B-2) and (B-3):



=l

)

- Ye;

If there is negligible heat loss at the liquid-solid interface:

P Y%l

¢

A . %I;

Combining with Equation (B-5) yields

A Y, (999'99:)
lcwp Ho - H; Y9;

L Pevap (% 9e,) y
Ye; Ho - H;

By Dalton's law of gas mixtures:

Pr’PCJ'Pg
R =Y Pr

Y. M,
= &<
Y = VoM + (1- %) Mg

/ M 1
— =/ 9 ——-[)
Ye Me \ Ye

hence at the interface:
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Equating Equations (B-7a) and (B-9):

lc'vup [yc‘i - yco] . Mg Pr _’) (B-10)

/'/o 'H" MC Pc"

Equation (B-10) contains the gas stream properties at the centerline of the
tube while the measured parameters are averaged values. By Equation (B-4):

Yo, - Y, Ye, - Y. Ye: - e
Substitution into Equation (B-10) yields:
AC”"f [9e; =] - M ('D’ - /) (B-10a)
H - H; Me \ R
The enthalpy of a gas mixture is given by:
H=yg. H +(1-9:)Hy (B-11)

Equation (B-10a) then becomes:

R'C’U'GP- [5/6; -yo] Mg (Pr ,)
, Je (He - H, =—(z"" B-10b
Hy-Hor# Ge (He-Hy)-ge.(Hey-Hy:) M\ B ( )

This equation implicitly involves the liquid-gas interface temperature and this
temperature may be evaluated by an iterative procedure. The quantities /79 )
H. and gy, are measured quantities at the gas exit point (point C of

Figure 1), Selection of an interface temperature allows evaluation of P,_.‘- ,
Hey //9‘- , and /'lcm. The parameter ¢,. is computed from Equation (B-9).
This information allows iterative solution of Equation (B-10b) to determine the
interface temperature. Table 3 contains a tabulation of required parameters

for the Nz - HZO system at 1 atmosphere of pressure.
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TABLE 3

INTERFACE PROPERTIES AT P = | ATMOSPHERE

Ti )~
(°F) (Btu/#)
150 1008
160 1002
170 996.9
180 990, 2
190 984.1
200 977.9
210 971.6
212 970.3
Table 4

|

P; Ve, Ye. Hy
i i 2
#mix, #c {Btu)

{psi) #c fmix., ¥
3.71 5.5 0.18 1126
4.74 4.3 0.23 1130
5.99 3.2 0.31 1134
7.51 2.4 0.41 1138
9.34 1.9 0.53 1142
11.52 1.4 0.71 1146
14.12 1.06 0.94 1150
14.70 1.00 1.00 1151

measured gas conditions.

°F

500
1000
1500

2000
2500

TABLE 4

151
154
157
159
161
163
166

167

contains a tabulation of interface conditions for a variety of

INTERFACE TEMPERATURE AND COMPOSITION FOR THE

N

149.5! 0.174
166.050.272
174.550.348
180.1E0.4l4

185.5, 0. 475

176.o§o.364

184.0! 0. 446
]

189.0, 0.515
]

192.0:0.570
195.010.617

191.5, 0. 555
]

195.0;0.614
|

198,010,672

199.8,0.707
]

201.51 0, 742
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c., YC.
1 1

zon.oio.735

T

I
203.0' 0.775
zos.oio.szo
|
205.5' 0,833
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2" HZO SYSTEM AT ONE ATMOSPHERE PRESSURE

0.9
TC. ' YC.
1 1

209.0,0.913
zo9.3so.9za
zo9.5;o.937
210.050.947
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APPENDIX C

AN APPROXIMATE EQUATION OF STATE FOR NITROGEN IN
THE DISSOCIATED AND WEAKLY IONIZED CONDITION

The thermodynamic properties of high temperature nitrogen are
available in tabular form in Reference C-1 in the temperature range
2000 to 8000 °K and a density range of 10-3

pheric density. For many engineering applications an approximate

to 10 times standard atmos-

analytical relationship describing the pressure, density, and energy
content of the gas is useful. At low temperature levels, temperatures
where dissociation is not important, many generalized equations of state
exist, the simplest being the ideal gas law. When dissociation takes

place, the energy content of the gas is no longer measured by gas tempera-
ture because energy is also being absorbed in a chemical reaction, hence

enthalpy is used to define the energy content of the gaseous system.

Figure 25 shows data of Reference C-1 plotted in the form 7{:— . -/'5%-
vs H/RT, for various values of /0/,00 . Note that the data are independent
of ©/p, for values of H/RT, less than 58 (T < 4000 °K), Figure 26 shows
the data of Figure 25 plotted as a function of P/Po . A reference parameter,
H, =58 RT7, , has been introduced on the abcissia. Definition of base

properties allows these data to be fitted to equations by curve fitting techniques.

A =1atm
P =8.65x 1073 gm/cc
H, =58 RT,
P =1,987 cal/gm-mole °K
T, =288.1°K
27 < ;’;-’,—s 58 7’;-% =(”i,)a'” (C-1)

76



ot_ .\o._
NI9OYLIN 804 — SA (—)—

84nb
m oo\ p 114 4

¥,000°n) o 34,0024 4,009¢
_ L4/u

000! 008 009 00h 00z oQl o 09 Oh 0z

secscabocsccnvabrcscomcaanachenns

Am— y p—
R ' I 1A y i IR N
.
[ . ' i ' [ ‘ ' “ H
' H H ] ' 1 ' . ] [ ’ H
N M H » 3 ’ . i N [ I . H
r=ed . ' 2 . ¢ (N o
M) . (o (d - " H 14 q :
. . ' + .
' H ’ ’ .
Poo0 b 10 39NI¥343Y NO¥ NINVL V1Va R : .
1 ) H [l [
eedoncpmnada 4 4 cacees donaed - -
e M 4 0 0 M " 0 " M
Do A boob '
H ' * ' + .
. eeedenaand S S SN SO . 4
N ' [ » ' [) 3 H
. . ‘ ' v ] ' :
5 ] ’ : H -
p doemate 4 , 8
] H . ‘
' H i '
H [
' 1 : 1 '
& o e 'y
=9 (aide o Q ’ 0l
H H ’ . ' H
' ' '
H H H ] H ’ H » '
H ' ¥ ] . ' H H + '
T ’ ' ' H H ] ’
’ H ' ' ' ' H ' +
' ' ' [ ' ! H . s 3 [
' H + » » H H ' [ ] '
[ ' ' ' H H ’ ' * '
H N + . . H4 H ' ' '
[ ' . ’ ' H ' ' s
' ' [ ¢ . H ' H [ ' 4 1
H ) ] ' ' H H H ’ P ' ’
' H ’ ' ' H H H ' ’ .
b oot ' : Pt P
[ ’ ' ' ' H ' 1 1 o] ©
o H H H ' H . . -3
I : ' H : H H 1
. ' M 3 2 s ' 4 a. ON —
L v ) 0 r e ¢ 1
P oo ; P LY AN
H ' ' H H H V H o
HE H H H ' . H H ~—
’ H 1 . ' ' H . '
[ . ] [ H H * .
[ ’ . ’ M H . ¢
u ' ' . ’ H H 5 '
A I : : P
4 1 . . N ) 1 +
- s ¥ '
I ' H . . H
[ . H ' i
[ H H i '
H . 1 N 4 +
[ H H ' .
[ H H . *
HIR ¢ ] '
.
I H
H 1
’ Y
H .
B '
v
.
'
¢
'
v
'
.

RGN L SURIIR SRR JOURE PPN

O O RO ROt XUt SRR RO BN NSNS U S U Hp

: \W\ ; : o
EREE17/ SN SRR
h 20 L : 09
: -0! : : :
4 b e
/1o ; S R 08
e S ot Rt dremsmnnmcnneo e e e SR -
R H I 1 H H St + 8-

17



80

eely

°
"ln.

-------

0.4 0.8 0.8 .0 2 4

W,

_/;_o vs — FOR NITROGEN

P
i 26 —.
Figure H,

Po

78

10



0.6/5+0.040 Log ,, /P,

535(% < 500 f;'%/ﬁ’;) (C-2)

These equations have been compared with the tabulated data of Reference
C-1 and the Mollier Diagram given in Reference C-2, Equation (C-1) is
accurate within one percent while Equation (C-2) indicates an average
error of 4. 2 percent with a range of errorof 0.2 to 8.8 percent. The useful

limits of the equation are set by:
58 < H/RT, < 500
0.02 < P/P, < 200
The pressure dependence of the exponent of Equation (C-2) is weak, hence

an average pressure may be used in the exponent for processes involving

pressure change.
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